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Long-Term Climatic Transitions and 
Stochastic Resonance 

C. Nicol i s  1 

Stochastic resonance constitutes one of the few plausible mechanisms capable of 
explaining the recurrent climatic changes that occurred on earth during the 
Quaternary era. In this paper early attempts and more recent progress to model 
these phenomena on a global scale are reviewed. 
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1. I N T R O D U C T I O N  

Stochastic resonance is increasingly becoming a concept of universal 
validity. One realizes that the issue of enhanced sensitivity to small external 
forcings may be instrumental for the understanding of phenomena of 
current and primary concern in quite different contexts. This is undoubtedly 
the reason why the NATO workshop on stochastic resonance has managed 
to bring together researchers from unusually different horizons, a fact that 
is well reflected by the wide range of disciplines represented in the present 
special issue of the Journal of Statistical Physics. 

Despite the variety we have just pointed out, one nevertheless notices 
that in their vast majority the papers presented deal either with general- 
purpose mathematical models or with phenomena that belong to the 
traditional realm of physical science; in other words, phenomena that 
unfold on time and space scales easily accessible to laboratory experiment. 
In this paper we discuss stochastic resonance on the quite different and, to 
some extent, more impressive scale of phenomena related to global climate. 
Curiously, it so happens that this more exotic context is also the one on 
which stochastic resonance was first introduced in the scientific literature 
some 10 years ago. ~1' 2) 
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According to all elements of information at our disposal, the climatic 
system possesses a very pronounced internal variability. A striking illustra- 
tion of this property is given by the last glaciation. During its peak, about 
18,000 years ago, in the Northern hemisphere the Laurentide ice sheet 
covered most of Canada, New England, and much of the Middle West, 
Great Plains, and Rockies, whereas the Fenno-Scandian ice sheet extended 
into Eastern and Central Europe. In the Southern hemisphere ice sheets 
developed also over parts of Australia and New Zealand and extended out 
of the Andes. (3) During this period the mean temperature of the globe was 
a few degrees lower than it is today, whereas the total volume of ice 
trapped in glaciers was more than two times larger than its present value 
of 30 x 106 km 3. After these extreme conditions and in a time span of the 
order of a few thousand years the ice retreated to essentially the areas that 
it occupies today: Antarctica, Greenland, the Canadian Archipelago, and 
small mountain glaciers. In other words, the planet earth, a physical 
system, has in a few thousand years (a short time on a geological scale) 
undergone a transition between two extraordinary different states whose 
difference extends over the dimensions of the earth itself! 

Going further back in the past, one now realizes that glaciations have 
actually covered, in an intermittent fashion, much of the Quaternary era. 
Figure 1 depicts the variation of the continental ice volume on earth over 
the last 106 years associated with these glacial-interglacial transitions as 
inferred from the oxygen isotope record of deep sea cores. (4) Statistical data 
analysis shows that these major climatic episodes present an average 
periodicity of about 105 years to which is superimposed a considerable, 
random-looking variability (Fig. 2). This is intriguing, since the only known 
time scale in the range of 105 years refers to the change of eccentricity of 

Fig. 1. 
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Total volume of ice on earth during the last million years as deduced from deep sea 
core V28-238. (4) 
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Typical variance spectrum of climatic variability over the last million years. 

the earth's orbit in time as a result of the perturbing action of the other 
bodies of the solar system. This perturbation in turn modifies the total 
solar energy received by the earth. Now the magnitude of this astronomical 
effect turns out to be exceedingly small, about 0.1%.(5/The question there- 
fore naturally arises, whether one can identify in the global dynamics of the 
earth-atmosphere-cryosphere system mechanisms capable of enhancing the 
sensitivity of the system to such small external periodic forcings. This was, 
precisely, the motivation of the early work on stochastic resonance. 

Our principal objective in this paper is first, to summarize these early 
attempts, and subsequently, to comment on more recent developments in 
this particular field aiming to understand the sensitivity properties of 
the global climate. More specifically, in Section 2 a simple energy-balance- 
based model of glaciation cycles, viewed as a fluctuation-induced transition 
between multiple states enhanced by stochastic resonance, is analyzed. In 
Section 3 the possibility that glaciation cycles arise from internally 
generated oscillations or chaos is explored on the basis of coupled energy 
and mass balance equations. The main conclusions are drawn in Section 4. 

2. S T O C H A S T I C  R E S O N A N C E  A N D  G L A C I A T I O N  CYCLES 

Let us argue in very global terms, considering the earth as a zero- 
dimensional object in space receiving solar radiation and emitting in turn 
infrared radiation back to space. In such a view the relevant state variable 
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is the mean annual global average temperature T, which evolves in time 
according to the energy balance equation 

dT 
C -~- = Incoming radiation - Outgoing radiation + Statistical fluctuations 

= Q[1 - a(T)]  - -  ~3Bo'T 4 q- F(t) (1) 

Here C is the heat capacity; Q the solar constant; a the albedo, expressing 
the part of solar radiation reflected back to space [the temperature 
dependence anticipated in Eq. (1) accounts for the surface-albedo feed- 
back];  a the Stefan constant; and ee an emissivity factor accounting for 
deviations from the blackbody radiation law. For  simplici tythe random 
force term F(t) is modeled as a Gaussian white noise 

(F(t)) =0,  (F(t)F(t ')) =q26( t - t ' )  (2) 

Satellite data suggest that for temperature values T near the present- 
day climate, a(T) is roughly a linear function of its argument. On the other 
hand, for very low T, a(T) must tend to the albedo of ice, aicc, whereas for 
high T, a(T) should also saturate to some value ahot descriptive of an ice- 
free earth. The simplest representation taking these features into account is 
the following piecewise linear model(6): 

1 - a(T) = 1 -aico 

1-a (T)=  1 -  (e-~T) 

1 - a ( T )  = 1 - a h o t  

T <  T~ 

TI < T < T2 

T> T2 

(3) 

Furthermore, in view of the orbital variations alluded to in the Introduc- 
tion, we decompose Q into an unperturbed part Q0 and a periodic forcing, 

Q = Qo(1 + e sin cot) (4) 

where e ~ 0.001 and co = 27r/105 y r -  I. 
Now the crucial point, illustrated in Fig. 3, is to realize that for 

plausible parameter values and in the absence of both stochastic and 
periodic forcings (q = 0, e = 0) the energy budget predicts, typically, two 
stable climates. One of them, T+,  corresponds to present-day conditions, 
whereas the other one, T , corresponds to a very low temperature and 
may be taken to represent a glaciation climate. These stable climates are 
separated by an intermediate unstable one, T o. As a result, Eq. (1) provides 
a typical illustration of the by now classical setting of stochastic resonance. 

In the work reported earlier (1) we considered the case of "coexistence" 
of the two stable states T+ and T_ in the sense that the probability 
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Fig. 3, Incoming and outgoing radiative energy as function of the global average tem- 
perature T. Their intersections at T+, T ,  and To are the three steady states of Eq. (1) with 

- 0, q2 = 0. Parameter values: Q = 340 W m 2, aic~ = 0.82, aho t =0.25, fl =0.0075, and 
~=0.61. 

masses in the two attraction basins of Eq. (1) with e = 0 are of the same 
order of magnitude. Recently ~7) evidence has been produced that this 
situation is in complete agreement with the statistical analysis of the record 
(Fig. 1). 

The analysis was based on the Fokker-Planck  equation corresponding 
to (1). This equation was first reduced, using the adiabatic approximation, 
to a closed equation for the total probability mass in one of the attraction 
basins ~s~ (say the left one) 

N = r + ( t ) -  [ r_ ( t )  + r + ( t ) ] N  (5) 

where 

r_+ =~-~ IU"(To, U"(T+_, - q  3U+(t) 
(6) 

~IU• = U(To, t ) -  U(T+_, t) 

and the kinetic potential U(T, t) is given by 

U(T, t)= ~T - dT' {Oo(1 + e sin egt)l-1 -a(T ' )]-eB~rT '4 } (7) 
d 

To solve Eq. (5), we set 

S_( t )=No+eN sin(~t + q~) (8) 

where N o is the stationary solution of Eq. (5) in the absence of the forcing 
(No~0.5) .  Expanding Eqs. (5)-(7) in E and keeping only linear terms, one 
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finds that the amplitude of the response N depends crucially on the ratio 
of the two characteristic times of the problem: that is, the Kramers time ZKr 
and the periodicity of the forcing co-1: 

~22  [-1 +(~K~co) 2] 1/2 (9) 

For  physical values of q2 and A U+,  ~Kr is very large. Therefore, if ~o is of 
the order of 1, the inverse square root factor would be exceedingly small 
and the response to this type of forcing would be negligible. 

The situation is completely different if co-1 is of the same order of 
magnitude as (or less than) ~Kr. With the value of q2 for which this 
equality is achieved one finds an amplification of the response of ~ 20 %, 
which is quite appreciable, considering the smallness of the amplitude of 
the periodic forcing ~. Similar conclusions have been reached independently 
and almost simultaneously by Benzi and co-workers ~2) on the basis of 
computer  simulations of the Langevin equation (1). 

Furthermore,  from the perturbative solution of (5) the phase shift 
between the forcing and the response is found to be 

~0= - arctg(rKrco) (10) 

The Fokker -P lanck  equation associated to (1) was also integrated 
numerically using a method developed by Chang and CooperJ  9) Curve (a) 
of Fig. 4 depicts the time variation of the probability mass in the low- 
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Fig. 4. Time evolution during 3 cycles of the probability mass in the low-temperature attrac- 
tion basin N_, normalized by its steady-state value No, in the presence of a periodic forcing 
with e = 0.001 and (a) o~ = 2~/105 yr -1, simulating the variation of the eccentricity of the 
earth's orbit, and (b) o~=2n/ll yr ~, simulating a possible variation of the solar constant 
with the sunspot cycle. Time scale is normalized in such a way that C= 1 in Eq. (1). 
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temperature attraction basin N_ normalized by its value in the absence of 
the forcing, No. Choosing the variance of fluctuations q2 such that ~o ~ r~r 1, 
we observe, in accordance with the analytical results, an amplification of 
the probability mass of the order of 20 %. There is a considerable time lag 
between forcing and response: As it turns out the maximum of the response 
lags behind the forcing by about 45 ~ (12,500 years), in quantitative agree- 
ment with Eq. (10). For comparison we show in curve (b) the response to an 
11-year solar cycle simulating a possible variation of the solar influx with the 
sunspot cycle. We see that the variation is now practically negligible. 

The dramatic amplification of the response to an external periodic 
forcing in the presence of fluctuations has been referred to as stochastic 
resonance. As one sees from the analysis, this phenomenon is not to be 
confused with resonance in the usual sense of the term. It constitutes a 
new mechanism of amplification relying explicitly on the presence of both 
periodic and stochastic forcings. 

3. S E L F - G E N E R A T E D  O S C I L L A T O R Y  B E H A V I O R  A N D  
G L A C I A T I O N  CYCLES 

The intermittent character of the Quaternary glaciations and, more 
generally, of long-term climatic changes suggests the alternative scenario 
whereby the earth-atmosphere-cryosphere system would produce aperiodic 
self-sustained oscillations. Potentially, such a behavior may arise from the 
interaction between surface energy balance and mass balance of the cryo- 
sphere. A typical model describing the coupling between these processes is 
the one proposed by Saltzman and co-workers. (1~ In dimensionless excess 
variables it reads 

dr/ O - q  
dt 

(11) 
dO 
- -  = b O  - a ~ l  - 1720 
dt 

where a, b are positive parameters and r/, 0 stand, respectively, for the 
sea-ice extent and mean ocean surface temperature. Equations (! 1) predict 
two types of behavior: 

(i) a>b .  For b~> 1 a stable limit cycle bifurcates from the steady 
state. For  reasonable parameter values inferred from the time scales of the 
processes present its period is of the order of a few thousand years. This is 
quite far from the dominant 105-year scale suggested from the record in 
Fig. 2. Even if the periods could be matched, the oscillatory behavior 
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predicted would be incompatible with the random-looking character of 
the data (Fig. 1). One might of course enlarge Eqs. (11) by stochastic and 
periodic forcings modeling, respectively, the variation of the earth's orbit 
and the complexity of the environment. (11) However, these refinements 
would again produce behaviors very different from the record, which is 
reminiscent of transitions between two preferred states rather than of a 
noisy periodicity. (7~ This scenario is, therefore, to be dismissed. 

(ii) b > a. In this range Eqs. (11) give rise to a phase portrait reminis- 
cent of the dissipative Duffing oscillator. (12) One can show that for 
reasonable parameter values this oscillator can be  brought close to a 
homoclinic bifurcation. Under the action of a weak periodic forcing 
simulating orbital variations, such a system shows, once again, a pro- 
nounced sensitivity. Specifically, a qualitative change of regime can take 
place, leading to a chaotic attractor. 

More technically, introducing the new variable 

and the parameters 

{ = 0 - r /  (12) 

e l = b - I  
(13) 

e 2 = b - a  

one can write the augmented form of Eqs. (11) including the periodic 
forcing as 

dt 
(14) 

d~ el~ + e2q_ t/3_ q2~ + s sin co t 
dt 

where s and co are, respectively, the amplitude and frequency of the forcing. 
Performing the following scaling of variables and parameters, 

2 r/---= X/t, ~ -~ y# , s = p/~4 

e t  = 71/-12 , e2-~-  7 2 #  2 , /~<{1 (15) 

t = " C / / - 1  , ( 0  = f 2 / /  

one may further write (14) as 

dx 
d'c y 

(16) 
dy X3 ~ =  y2x-- +kt(71y--x2y+psin(2~) 
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These equations can be viewed as the perturbations (for # ~  1) of a 
reference system described by 

d x  o 

d, - Yo 

dyo 
= y 2 X o -  x~ 

(17) 

This is a Hamiltonian system corresponding to the conservative Duffing 
oscillator. (12) It exhibits a continuum of periodic trajectories as well as a 
pair of homoclinic orbits existing for all positive values of the parameter 72. 
Going from Eqs. (17) to Eqs. (16) amounts therefore to inquiring how this 
phase space structure and, in particular, the infinite-period homoclinic 
orbits are perturbed by both the "dissipative" terms 71 Y -  x2Y and by the 
periodic forcing. 

This problem can be formulated analytically. Setting X = X o + # U ,  

Y--Yo +/w, we obtain the following equations for the perturbations u, v: 

du 
q ~ Z )  
& 

dv 
= (72 - 3x2) u + 71 Yo - x~ Yo + P  sin f2z 

(18) 

This is an inhomogeneous system of equations, which admits a nonsingular 
solution provided that a solvability condition is satisfied. The latter is given 
by the Meln ikov  integral(13): 

f ~ dr y o ( 7 1 Y o - X ~ y o + p s i n f 2 z ) = O  (19) 
oo 

This relation allows us to identify a critical forcing amplitude Pc beyond 
which the homoclinic orbit is destroyed by the periodic perturbation. One 
obtains, after a lengthy calculation, (14) 

1 32(  _ ~ 7 2 )  ch[g2~/(272)l/2] +1 
Pc=~72 / 71 ch[f~/2(272)~/23 (20) 

In the theory of dynamical systems one shows that for p >Pc a variety of 
complex nonperiodic behaviors may arise. (15) Figure 5 depicts a typical 
time series obtained from numerical simulation in this region, along with 
the corresponding power spectrum. One obtains an aperiodic behavior in 
the form of intermittent transitions between two phase space regions. It is 
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Fig. 5. Time evolution of (a) the variable y and (b) power spectrum of variable x for system 
(16) in the parameter region for which it admits aperiodic behavior. Parameter values: 
'/1 = 1.01, 72 = 1, /~=0.1, (2 =0.3, and p =  50pc (pc=0.148). This latter value corresponds to 
a forcing amplitude of the initial equations (14) of s ~ 7 x 10 -4. 

noteworthy that the power spectrum exhibits an important broad-band 
component, a dominant, sharp peak at the forcing frequency, and a less 
pronounced and more noisy peak close to the unforced system's self-oscilla- 
tion frequency (equal to about 3 times the forcing frequency). The 
similarity with paleoclimatic spectra (Fig. 2) is rather striking, considering 
the simplicity of the model. It suggests that deterministic chaos provides a 
plausible scenario of Quaternary climatic changes. This view if further 
corroborated by a dynamical reconstruction starting from the time series 
data of Fig. 1, which suggests the existence of a low-dimensional (between 
3 and 4) chaotic attractor governing the dynamics in this time scaleJ 16) 
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4. C O N C L U D I N G  R E M A R K S  

We have identified a mechanism of climatic variability based on 
stochastic resonance, enabling the ear th-atmosphere-cryosphere  system to 
respond sensitively to small-amplitude external periodic forcings arising 
from the variability of the earth's orbit. Furthermore, we have pointed out 
that the aperiodic character of climatic variability could also be associated 
with internally generated deterministic chaos. 

Far  from being contradictory, these two scenarios of long-term 
climatic change present interesting complementarities. Specifically, the pic- 
ture of a bistable system performing fluctuation-driven intermittent jumps 
between two states can be viewed as a short-hand description of a chaotic 
attractor (see also the paper by Nicolis et  al. in this issue(17)). In this view, 
the deterministic part  and the random force in Eq. (1) represent, respec- 
tively, the large-scale structure of the underlying chaotic attractor and the 
"effective" noise that is intrinsically generated by the dynamics. (18) 
Naturally, a more satisfactory approach would be to model such a noise as 
a highly correlated process rather than as a white noise one. As shown in 
other contributions in this issue, the theory of stochastic resonance ca;n be 
amended to take this refinement into account without any substantial 
change in the overall philosophy. 
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